Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

t-Prolinium picrate and 2-methylpyridinium picrate

K. Anitha, ${ }^{*}$ S. Athimoolam and S. Natarajan

Department of Physics, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail: xrdsopmku@yahoo.com

Received 5 June 2006
Accepted 27 July 2006
Online 23 August 2006

In the structure of L -prolinium picrate, $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2}{ }^{+}$.$\mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-}$, the C^{γ} atom of the pyrrolidine ring has conformational disorder. Both the major and minor conformers of the pyrrolidine ring adopt conformations intermediate between a half-chair and an envelope. Both the cation and anion are packed through chelated three-centred $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The prolinium cation connects two different picrate anions, leading to an infinite chain running along the b axis. In 2-methylpyridinium picrate, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}^{+} . \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{-}$, the cations and anions are packed separately along the a axis and are interconnected by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Intramolecular contacts between phenolate O atoms and adjacent nitro groups are identified in both structures. A graph-set motif of $R_{1}^{2}(6)$ is observed in both structures.

Comment

Picric acid forms charge-transfer complexes with organic compounds. Crystalline picrates have commonly been used in the preparation of amine derivatives in qualitative organic chemistry (Shriner et al., 1980). The crystal structure elucidation of l-prolinium picrate, (I), and 2-methylpyridinium picrate, (II), was undertaken to study the nature of hydrogen bonding between the molecular ions, involving phenolate O atoms and the protonated N atoms, and the crystal packing in the different environments.

(I)

(II)

In the structure of (I), the asymmetric part of the unit cell contains a prolinium cation and a picrate anion (Fig. 1). An orthorhombic form of l-prolinium picrate has already been reported (Jin et al., 2003). The backbone conformation angles $\psi^{1}(\mathrm{O} 1 A-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1)$ and $\psi^{2}(\mathrm{O} 1 B-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1)$ are cis and trans, respectively. The side-chain conformation angles χ^{1} ($\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4), \chi^{2}(\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5), \chi^{3}(\mathrm{C} 4-\mathrm{C} 5-$
$\mathrm{N} 1-\mathrm{C} 2), \chi^{4}(\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1)$ and $\theta(\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 5)$ are $8.3,-27.2,-29.6,34.7$ and 13.2, respectively (Prasad \& Vijayan, 1993) (Table 1). The C^{γ} atom (C4) of the pyrrolidine ring has conformational disorder, as observed in bis(L-proline) hydrogen perchlorate (Pandiarajan et al., 2002). Atoms C4 and C 41 deviate from the plane formed by atoms $\mathrm{N} 1, \mathrm{C} 2, \mathrm{C} 3$ and C5, whereas atoms N1, C2, C3 and C5 are nearly coplanar. Both the major and minor conformers of the pyrrolidine ring adopt conformations intermediate between a half-chair and an envelope (Cremer \& Pople, 1975; Nardelli, 1983). The angle between the rings of the anion and cation is 44.4 (2) ${ }^{\circ}$.

Both the cation and anion of (I) are packed through chelated three-centred $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, as observed in other picrate complexes (Jin et al., 2003; Kai et al., 1994). The prolinium cation connects two different picrate anions, leading to an infinite chain running along the b axis

Figure 1
The molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The hydrogen bond is indicated by dashed lines. H atoms not involved in this interaction have been omitted.

Figure 2
The infinite chain formed in the crystal structure of (I), connecting two picrate anions with cations, running along the a axis. Hydrogen bonds are shown as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity.
(Fig. 2). Weak three-centred $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds also stabilize the structure. The prolinium cation forms an infinite chain along the b axis through a $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 2). The anion and cation form a hydrogen-bonded network with a graph-set motif of $R_{1}^{2}(6)$ (Etter et al., 1990) (Fig. 2).

The crystal structures of pyridine and pyridine trihydrate (Mootz \& Wussow, 1981), pyridine picrate (Talukdar \& Chaudhuri, 1976) and pyridinium picrate (Takayanagi et al., 1990) have already been reported. The asymmetric part of the unit cell of (II) contains two 2-methylpyridinium cations and two picrate anions (Fig. 4). The protonation of the N atom of

Figure 3
A packing diagram of the molecules in the structure of (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 4
The molecular structure of compound (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are indicated by dashed lines and H atoms not involved in these interactions have been omitted.

Figure 5
A packing diagram of the molecules in the structure of (II), viewed down the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
the pyridine ring is confirmed from the values of the $\mathrm{C}-\mathrm{N}$ bond distances (Table 3), which agree well with those in pyridinum picrate. The angles between the rings of both anions and those of the cations are 74.4 (1) (between rings N11/C12-C16 and C31-C36) and 79.4 (1) ${ }^{\circ}$ (between rings N11/C12-C16 and C41-C46), and 76.5 (1) (between rings N21/C22-C26 and C31-C36) and 80.7 (1) ${ }^{\circ}$ (between rings N21/C22-C26 and C41-C46). The pyridine ring is almost normal to the benzene ring. This fact supports the absence of π bonding in this complex, as observed in p-phenylenediamine picrate and o-phenylenediamine picrate (Takayanagi et al., 1996). Both cations form bifurcated $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds with inversely related anions, thus forming a graph-set motif of $R_{1}^{2}(6)$ (Fig. 5). This type of bifurcated hydrogen bonding (Table 4) is also observed in the crystal structure of (I).

In the picrate anions of (I) and (II), the bond distances and angles indicate the deprotonation of the phenol group, and the geometry is similar to that in other picrate complexes (Takayanagi et al., 1996). The picrate anions are sandwiched between layers of prolinium cations along the c axis in (I) (Fig. 3), whereas in (II) the picrate anions are packed between layers of pyridinium cations (Fig. 5). In the structure of (II), the anions are arranged nearly parallel to each other, making angles of 9.02 (1) and 11.4 (1) ${ }^{\circ}$ with the [001] plane. Intramolecular contacts between the phenolate O atoms and adjacent nitro groups are observed in both structures. In (I) and (II), one of the ortho-nitro groups is twisted more from the plane of the ring, while the para-nitro group is nearly coplanar. In the structure of (II), the angle between the rings of the picrate anions is $20.6(1)^{\circ}$, and the angle between the rings of the pyridinium cations is $25.1(1)^{\circ}$.

Experimental

Compound (I) was crystallized from an aqueous solution containing L-proline and picric acid in a $1: 1$ stoichiometric ratio at room
temperature by slow evaporation. Similarly, compound (II) was crystallized from an aqueous solution containing pyridoxine and picric acid in a 1:1 stoichiometric ratio at room temperature by slow evaporation. Instead of the expected picric acid complex with pyridoxine, crystals of 2-methylpyridinum picrate were obtained.

Compound (I)

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{2}{ }^{+} . \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}{ }^{-}$
$M_{r}=344.25$
Monoclinic, $P 2_{1}$
$a=10.909$ (4) \AA
$b=5.352$ (3) A
$c=12.474(5) \AA$
$\beta=109.142(5)^{\circ}$
$V=688.0(5) \mathrm{A}^{3}$
$Z=2$
$D_{x}=1.662 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.66 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Nonius MACH3 sealed-tube diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.967, T_{\text {max }}=0.981$
3719 measured reflections
2205 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.169$
$S=1.07$
2205 reflections
226 parameters
H -atom parameters constrained
D_{m} measured by flotation using a mixture of carbon tetrachloride and bromoform
Mo $K \alpha$ radiation
$\mu=0.15 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, yellow
$0.3 \times 0.2 \times 0.12 \mathrm{~mm}$

1590 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.100$
$\theta_{\text {max }}=30.0^{\circ}$
3 standard reflections
frequency: 60 min
intensity decay: none

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.1016 P)^{2}\right] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.49 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{gathered}
$$

Compound (II)

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}^{+} \cdot \mathrm{C}_{6} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}^{-}$
$M_{r}=322.24$
Triclinic, $P \overline{1}$
$a=8.211$ (3) \AA
$b=11.806$ (4) \AA
$c=14.388$ (4) \AA
$\alpha=85.428(5)^{\circ}$
$\beta=82.863(5)^{\circ}$
$\gamma=79.726(4)^{\circ}$
$V=1359.4$ (8) \AA^{3}
$Z=4$
Data collection
Nonius MACH3 sealed-tube diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.970, T_{\text {max }}=0.980$
5848 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.124$
$S=1.04$
4762 reflections
426 parameters
H -atom parameters constrained

$$
D_{x}=1.575 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
D_{m}=1.57 \mathrm{Mg} \mathrm{~m}^{-3}
$$

D_{m} measured by flotation using a mixture of xylene and carbon tetrachloride

Mo $K \alpha$ radiation

$\mu=0.13 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.25 \times 0.2 \times 0.15 \mathrm{~mm}$

4762 independent reflections 3255 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.015$
$\theta_{\text {max }}=25.0^{\circ}$
3 standard reflections frequency: 60 min intensity decay: none

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0564 P)^{2}\right. \\
&+0.5564 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

Table 3
Selected geometric parameters ($\AA,^{\circ}$) for (II).

N11-C12	$1.324(3)$	O31-C31	$1.252(3)$
N11-C16	$1.335(3)$	$\mathrm{O} 41-\mathrm{C} 41$	$1.253(3)$
C12-N11-C16	$123.3(2)$	$\mathrm{C} 22-\mathrm{N} 21-\mathrm{C} 26$	$123.1(2)$

Table 4
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N11-H11 \cdots O41	0.86	1.83	$2.656(3)$	160
N11-H11 O47	0.86	2.28	$2.771(5)$	117
N11-H11 O471	0.86	2.35	$2.906(11)$	123
N21-H21 O31	0.86	1.85	$2.680(3)$	160
N21-H21 \cdots O37	0.86	2.30	$2.783(3)$	116

All H atoms were placed in geometrically calculated positions and included in the refinement in the riding-model approximation, with $\mathrm{N}-\mathrm{H}=0.90 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ in compound (I), and with $\mathrm{N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ in compound (II). For both compounds, $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$. In compound (I), the C^{γ} atom (C4) of the pyrrolidine ring has conformational disorder, with site-occupancy factors of 0.52 and 0.48 . In compound (II), one of the O atoms of the picrate anion is disordered, with occupancy factors of 0.71 and 0.29 for atoms O47 and O471. In compound (I), owing to the absence of atoms heavier than Si , the absolute configuration could not be reliably determined and Friedel pairs were merged.

For both compounds, data collection: CAD-4 EXPRESS (EnrafNonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXTL/PC (Bruker, 2000); program(s) used to refine

organic compounds

structure: SHELXTL/PC; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2003) and MERCURY (Version 1.4.1; Macrae et al., 2006); software used to prepare material for publication: SHELXTL/PC.

The authors thank the Department of Science and Technology, Government of India, for establishing the SingleCrystal Diffractometer facility at the School of Physics, Madurai Kamaraj University, Madurai, through a FIST programme. The authors also thank the UGC for the SAP programme.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DN3021). Services for accessing these data are described at the back of the journal.

References

Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Jin, Z. M., Pan, Y. J., Hu, M. L., Shen, L. \& Li, M. C. (2003). Cryst. Res. Technol. 38, 1009-1012.
Kai, T., Goto, M., Furuhata, K. \& Takayanagi, H. (1994). Anal. Sci. 10, 359360.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.

Mootz, D. \& Wussow, H. G. (1981). J. Chem. Phys. 75, 1517-1522.
Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Pandiarajan, S., Sridhar, B. \& Rajaram, R. K. (2002). Acta Cryst. E58, o862o864.
Prasad, G. S. \& Vijayan, M. (1993). Acta Cryst. B49, 348-356.
Shriner, R. L., Fuson, R. C., Curtin, D. Y. \& Morrill, T. C. (1980). Qualitative Identification of Organic Compounds, 6th ed., pp. 236-237. New York: Wiley.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Takayanagi, H., Kai, T., Yamaguchi, S., Takeda, K. \& Goto, M. (1996). Chem. Pharm. Bull. 44, 2199-2204.
Takayanagi, H., Kawaoka, R., Chin, K., Goto, M., Yamaguchi, S. \& Ogura, H. (1990). Anal. Sci. 6, 321-322.

Talukdar, A. N. \& Chaudhuri, B. (1976). Acta Cryst. B32, 803-808.

